On the Distribution of the spt-Crank

نویسندگان

  • George E. Andrews
  • Robert C. Rhoades
چکیده

Andrews, Garvan and Liang introduced the spt-crank for vector partitions. We conjecture that for any n the sequence {NS(m,n)}m is unimodal, where NS(m,n) is the number of S-partitions of size n with crank m weight by the spt-crank. We relate this conjecture to a distributional result concerning the usual rank and crank of unrestricted partitions. This leads to a heuristic that suggests the conjecture is true and allows us to asymptotically establish the conjecture. Additionally, we give an asymptotic study for the distribution of the spt-crank statistic. Finally, we give some speculations about a definition for the spt-crank in terms of “marked” partitions. A “marked” partition is an unrestricted integer partition where each part is marked with a multiplicity number. It remains an interesting and apparently challenging problem to interpret the spt-crank in terms of ordinary integer partitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Spt-crank Type Functions

In a recent paper, Andrews, Dixit, and Yee introduced a new spt-type function spt ω (n), which is closely related to Ramanujan’s third order mock theta function ω(q). Garvan and Jennings-Shaffer introduce a crank function which explains congruences for spt ω (n). In this note, we study asymptotic behavior of this crank function and confirm a positivity conjecture of the crank asymptotically. We...

متن کامل

Combinatorial Interpretations of Congruences for the Spt-function

Let spt(n) denote the total number of appearances of the smallest parts in all the partitions of n. In 1988, the second author gave new combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11 in terms of a crank for weighted vector partitions. In 2008, the first author found Ramanujantype congruences for the spt-function mod 5, 7 and 13. We give new combinatorial inte...

متن کامل

Higher Order Spt-functions

Andrews’ spt-function can be written as the difference between the second symmetrized crank and rank moment functions. Using the machinery of Bailey pairs a combinatorial interpretation is given for the difference between higher order symmetrized crank and rank moment functions. This implies an inequality between crank and rank moments that was only known previously for sufficiently large n and...

متن کامل

Exotic Bailey-slater Spt-functions Ii: Hecke-rogers-type Double Sums and Bailey Pairs from Groups A, C, E

We continue to investigate spt-type functions that arise from Bailey pairs. We prove simple Ramanujan type congruences for these functions which can be explained by a spt-crank-type function. The spt-crank-type functions are constructed by adding an extra variable z into the generating functions. We find these generating functions to have interesting representations as either infinite products ...

متن کامل

Nearly Equal Distributions of the Rank and the Crank of Partitions

Let N(≤ m,n) denote the number of partitions of n with rank not greater than m, and let M(≤ m,n) denote the number of partitions of n with crank not greater than m. Bringmann and Mahlburg observed that N(≤ m,n) ≤ M(≤ m,n) ≤ N(≤ m + 1, n) for m < 0 and 1 ≤ n ≤ 100. They also pointed out that these inequalities can be restated as the existence of a re-ordering τn on the set of partitions of n suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013